Exercices corrigés - Racines et problèmes - 10e

Exercice 1

Exercice

Calculez ou répondez aux questions suivantes :

- a) Quel nombre a pour carré 1600?
- b) Calculez 4^2 .
- c) Quelle est la valeur de $\sqrt{49}$? Et celle de $\sqrt[3]{27}$?
- d) Calculez $\sqrt{225}$.
- e) Calculez $\left(-\frac{4}{3}\right)^2$.
- f) Justifiez que $\sqrt{2,25} = 1,5$.
- g) Existe-t-il un nombre dont le carré vaut -25?
- h) Calculez $\sqrt{0}$.
- i) Calculez $\sqrt[3]{-216}$.
- j) Peut-on extraire la racine carrée de -9?
- k) Calculez $-\frac{4^2}{5}$.
- l) Calculez $\sqrt{9}$.
- m) Calculez $-\sqrt{64}$.
- n) Calculez $\sqrt{20}$.
- o) Quel nombre a pour carré 15^2 ?

Accéder au corrigé

Exercice 2

Question : Soit $\sqrt{36} = 6$, c'est-à-dire que $6^2 = 36$, et $\sqrt[3]{216} = 6$, c'est-à-dire que $6^3 = 216$. Utilise ces exemples pour calculer :

- 1. $\sqrt{49} =$
- $2. \sqrt[3]{512} =$
- 3. $\sqrt{9.61} =$
- 4. $\sqrt[3]{1000} =$
- 5. $\sqrt[3]{729} =$
- 6. $\sqrt{14400} =$
- 7. $\sqrt[4]{81} =$
- 8. $\sqrt[3]{64} =$

Vérifie ensuite tes résultats avec ta calculatrice.

Exercice:

Calculez les expressions suivantes :

- a) $\sqrt{784} =$
- b) $\sqrt{14400} =$
- c) $\sqrt{0.36} =$
- d) $\sqrt{10^4} =$
- e) $\sqrt{\frac{9}{16}} =$
- f) $\sqrt{5625} =$
- g) $\sqrt{0.49} =$
- h) $\sqrt{4} =$
- i) $\sqrt{16 \cdot 36} =$
- j) $\sqrt[3]{27000} =$

Accéder au corrigé

Exercice 4

Encadrez chacun des nombres suivants par deux entiers consécutifs.

 ${\bf Exemple:}$

$$6 < \sqrt{41} < 7$$

a)

$$\sqrt{45}$$

b)

$$\sqrt[3]{28}$$

c)

$$\sqrt{0,3}$$

d)

$$\sqrt{380}$$

e)

$$\sqrt[3]{200}$$

f) $\sqrt[3]{19,8}$

g) $\sqrt{1225}$

h) $\sqrt{980}$

i) $\sqrt{2704}$

j) $\sqrt[3]{900}$

Accéder au corrigé

Exercice 5

Sans utiliser de calculatrice, calcule ou estime : a) $\sqrt{17} =$

b) $\sqrt{144} =$

c) $\sqrt{200} =$

d) $\sqrt{2401} =$

Accéder au corrigé

Exercice 6

 ${\bf Calculer}:$

- 1) $\sqrt{16}$
- 2) $\sqrt{49}$
- 3) $\sqrt{4}$
- 4) $\sqrt{25}$
- 5) $\sqrt{100}$
- 6) $\sqrt{81}$
- 7) $\sqrt{36}$
- 8) $\sqrt{64}$
- 9) $\sqrt{9}$
- 10) $\sqrt{144}$

Calculer les valeurs suivantes :

- 1) $\sqrt{100}$
- 2) $\sqrt{10000}$
- 3) $\sqrt{64}$
- 4) $\sqrt{6400}$
- 5) $\sqrt{400}$
- 6) $\sqrt{4000000}$
- 7) $\sqrt{16}$
- 8) $\sqrt{1600}$

Accéder au corrigé

Exercice 8

Calculer les valeurs suivantes :

- 1. $\sqrt{0,01}$

- $\begin{array}{cccc}
 2. & \sqrt{0,04} \\
 3. & \sqrt{0,09} \\
 4. & \sqrt{0,0004}
 \end{array}$
- 5. $\sqrt{0,16}$
- 6. $\sqrt{0,25}$
- 7. $\sqrt{0,64}$
- 8. $\sqrt{0.81}$

Accéder au corrigé

Exercice 9

Calculer les expressions suivantes :

- 1) $\sqrt{0,16}$
- 2) $\sqrt{160000}$
- 3) $\sqrt{1}$
- 4) $\sqrt{10000}$
- 5) $\sqrt{0,0025}$
- 6) $\sqrt{2500}$
- 7) $\sqrt{90000}$
- 8) $\sqrt{0,0009}$

Exercice

Calculer les racines carrées suivantes :

- 1) $\sqrt{0.0004}$
- 2) $\sqrt{40000}$
- 3) $\sqrt{0.81}$
- 4) $\sqrt{81}$
- 5) $\sqrt{1,44}$
- 6) $\sqrt{14400}$

Accéder au corrigé

Exercice 11

Calculer les expressions suivantes :

- 1) $\sqrt[3]{1}$
- 2) $\sqrt[3]{8}$
- 3) $\sqrt[3]{1000}$
- 4) $\sqrt[3]{27}$
- 5) $\sqrt[3]{0,001}$
- 6) $\sqrt[3]{27000}$
- 7) $\sqrt[3]{0,008}$
- 8) $\sqrt[3]{125}$

Accéder au corrigé

Exercice 12

Exercice

Calculer:

- 1) $\sqrt[3]{729}$
- 2) $\sqrt[3]{64}$
- 3) $\sqrt[3]{64000}$
- 4) $\sqrt[3]{0,064}$
- 5) $\sqrt[3]{125000}$
- 6) $\sqrt[3]{0,000125}$

- 7) $\sqrt[3]{343}$
- 8) $\sqrt[3]{0,125}$

Exercice 13

Exercice:

Calculez les expressions suivantes :

- 1. $\sqrt[3]{27}$
- 2. $\sqrt{25}$
- 3. $\sqrt[3]{8}$
- 4. $\sqrt[3]{8000}$
- 5. $\sqrt{1600}$
- 6. $\sqrt[3]{0,027}$
- 7. $\sqrt[3]{64000}$
- 8. $\sqrt{6400}$

Accéder au corrigé

Exercice 14

Calculez les expressions suivantes :

- 1. $\sqrt{4900}$
- 2. $\sqrt[3]{0,027}$
- 3. $\sqrt[3]{27000}$
- 4. $\sqrt{0,0009}$
- 5. $\sqrt{900}$
- 6. $\sqrt[3]{0,008}$
- 7. $\sqrt[3]{0,000125}$
- 8. $\sqrt{0,000025}$

Accéder au corrigé

Exercice 15

Exercice

Trouver tous les nombres entiers n tels que $1600 \le n^2 \le 2500$.

Accéder au corrigé

Exercice 16

Calculer les expressions suivantes :

- 1) $\sqrt{64}$
- 2) $\sqrt{0.64}$
- 3) $\sqrt{6400}$
- 4) $\sqrt{0,0064}$
- 5) $\sqrt{4}$
- 6) $\sqrt{40000}$

- 7) $\sqrt{0.04}$
- 8) $\sqrt{0,0004}$

Exercice 17

Exercice

Reproduisez la droite graduée ci-dessous. Placez ensuite les nombres suivants sur la droite :

$$0, 0, 01, \sqrt{0,01}, (0,4)^2, \sqrt{0,04}, (1,2)^2, \sqrt{0,25}, 1^2, 1.$$

Accéder au corrigé

Exercice 18

Exercice: Classer en ordre croissant

- 1) $\sqrt{0,09}$; $\sqrt{1,21}$; $\sqrt{0,36}$; $\sqrt{1}$; $\sqrt{1,69}$
- 2) $\sqrt{0.64}$; $(0.4)^2$; $\sqrt{1.21}$; $(1.21)^2$; $\sqrt{0.09}$; $(0.09)^2$
- 3) $0,3; \sqrt{4}; \sqrt{0,16}; 1,9; \sqrt{1,44}; 1,3; \sqrt{0,01}$

Accéder au corrigé

Exercice 19

Exercice:

Pour chacun des nombres suivants, déterminer deux entiers successifs entre lesquels se situe le nombre :

- 1. $\sqrt{17}$
- 2. $\sqrt{30}$
- 3. $\sqrt{110}$
- 4. $\sqrt{68}$
- 5. $\sqrt{72}$
- 6. $\sqrt{7}$
- 7. $\sqrt{39}$
- 8. $\sqrt{908}$

Accéder au corrigé

Exercice 20

Exercice

Pour chaque expression suivante, encadrez la valeur de l'expression au dixième près :

- 1) $\sqrt{0.6}$
- 2) $\sqrt{0.08}$
- 3) $\sqrt{0.47}$
- 4) $\sqrt{0.001}$

5) $\sqrt{0.9}$
6) $\sqrt{0.72}$
7) $\sqrt{0.03}$
8) $\sqrt{0.28}$
Accéder au corrigé
Exercice 21
Exercice:
Encadrez chacun des nombres suivants à la dizaine près :
1) $\sqrt{700}$
2) $\sqrt{70}$
3) $\sqrt{8000}$
4) $\sqrt{800}$
5) $\sqrt{3271}$
6) $\sqrt{2347}$
7) $\sqrt{1000}$
8) $\sqrt{324}$
Accéder au corrigé
Exercice 22
Pour chacun des nombres suivants, déterminez les deux entiers consécutifs entre lesquels il se situe :
1) $\sqrt{38}$
2) $\sqrt{3}$
3) $\sqrt{22}$
4) $\sqrt{93}$
5) $\sqrt{48}$
6) $\sqrt{150}$
7) $\sqrt{12}$
8) $\sqrt{5}$
Accéder au corrigé

Exercice:

Encadrer chacun des nombres suivants au dixième près :

- 1) $\sqrt{0,3}$
- 2) $\sqrt{0.8}$
- 3) $\sqrt{0.05}$
- 4) $\sqrt{0,53}$
- 5) $\sqrt{0,342}$
- 6) $\sqrt{0,4}$
- 7) $\sqrt{0.07}$
- 8) $\sqrt{0,152}$

Exercice 24

Exercice

Encadrez chacun des nombres suivants à la dizaine près :

- 1) $\sqrt{5472}$
- 2) $\sqrt{547}$
- 3) $\sqrt{6248}$
- 4) $\sqrt{624}$
- 5) $\sqrt{122}$
- 6) $\sqrt{3427}$
- 7) $\sqrt{12134}$
- 8) $\sqrt{72}$

Accéder au corrigé

Exercice 25

Exercice

Calculer la valeur de $\sqrt{a^2}$ pour chacune des valeurs suivantes :

- 1. a = 1
- 2. a = 3
- 3. a = 0, 1
- 4. a = 100
- 5. a = 7
- 6. a = 0,02
- 7. a = 11
- 8. a = 0, 5

Calculer la valeur de $\sqrt{4a^2}$ pour chacune des valeurs suivantes de a :

- 1. a = 0, 1
- 2. a = 5
- 3. a = 10
- 4. a = 1, 1
- 5. a = 1, 2
- 6. a = 0.01
- 7. a = 50
- 8. a = 400

Accéder au corrigé

Exercice 27

Substituez a=0.3 dans les expressions suivantes, puis calculez :

- 1) $\sqrt{9a^2}$
- 2) $4a 2\sqrt{a^2}$
- 3) $4a 4\sqrt{a^2}$
- 4) $4a \sqrt{4a^2}$
- 5) $\sqrt{9}a^2$
- 6) $\sqrt{9a^2} 2a$

Accéder au corrigé

Exercice 28

Soit a=5 et b=4. Remplacez a et b dans les expressions suivantes, puis calculez :

- 1) $\sqrt{a^2 b^2}$
- $2) \sqrt{a^2} \sqrt{b^2}$
- $3) \ \sqrt{4 \left(a^2 b^2\right)}$
- $4)\ \sqrt{4}\left(a^2-b^2\right)$
- 5) $\sqrt{4a^2} \sqrt{b^2}$
- 6) $\sqrt{4a^2} \sqrt{4b^2}$

Accéder au corrigé

Exercice 29

Exercice

Calculer la valeur de l'expression

$$\sqrt{9a^2} + 2a$$

pour les cas suivants :

- 1. a = 2
- 2. a = 1
- 3. $a = \sqrt{9}$

Calculer la valeur de l'expression

$$3x - \sqrt{4x^2}$$

pour les valeurs suivantes : 1. x = 4 2. x = 0, 1 3. x = 0, 3

Accéder au corrigé

Exercice 31

Calculer, lorsque cela est possible :

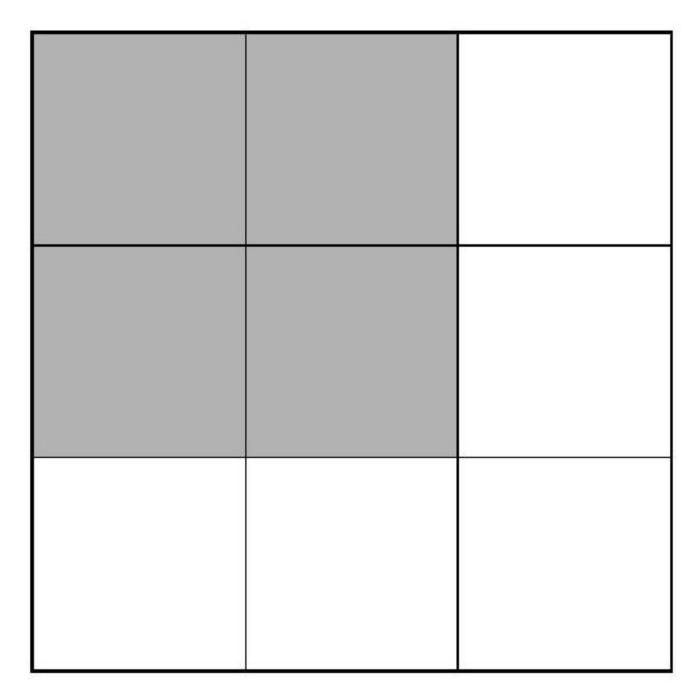
- 1. $\sqrt{9}$
- 2. $-\sqrt{9}$ 3. $\sqrt[3]{-27}$
- 4. $\sqrt[3]{+27}$ 5. $\sqrt[3]{+8}$
- 6. $-\sqrt[4]{16}$
- 7. $\sqrt{-9}$
- 8. $\sqrt[3]{-8}$
- 9. $\sqrt[4]{-81}$
- 10. $-\sqrt[4]{-625}$
- 11. $\sqrt[3]{125}$
- 12. $-\sqrt{-49}$

Accéder au corrigé

Exercice 32

Calculer les racines carrées des fractions suivantes :

- 1) $\sqrt{\frac{1}{9}}$


- 4) $\sqrt{\frac{25}{9}}$

- 7) $\sqrt{\frac{9}{16}}$

Accéder au corrigé

Exercice 33

Soit un grand carré dont l'aire est égale à 1. L'aire du carré ombré correspond à $\frac{4}{9}$ de l'aire du grand carré. Le carré ombré est inscrit dans le grand carré. Quelle fraction représente le côté du carré ombré par rapport au côté du grand carré?

Exercice 34

Calculer et simplifier chaque expression ci-dessous pour obtenir une fraction irréductible :

- 1. $\sqrt{\frac{4}{9}}$ 2. $\sqrt{\frac{25}{64}}$ 3. $\sqrt{\frac{50}{8}}$ 4. $\sqrt{\frac{18}{32}}$ 5. $\sqrt{\frac{12}{27}}$

Exercice 35

Calculer et donner le résultat sous la forme d'une fraction irréductible :

- 1) $\frac{\sqrt{16}}{25}$
- 2) $\frac{16}{\sqrt{25}}$
- 3) $\sqrt{\frac{16}{25}}$
- 4) $\frac{\sqrt{4}}{16}$
- 5) $\frac{4}{\sqrt{16}}$
- 6) $\sqrt{\frac{4}{16}}$

Accéder au corrigé

Exercice 36

Exercice

Calculer et exprimer chaque résultat sous forme d'une fraction irréductible :

- 1) $\sqrt{\frac{100}{64}}$
- 2) $\frac{\sqrt{100}}{64}$
- 3) $\frac{100}{\sqrt{64}}$
- 4) $\sqrt{\frac{81}{9}}$
- 5) $\frac{\sqrt{81}}{9}$
- 6) $\frac{81}{\sqrt{9}}$

Accéder au corrigé

Exercice 37

Exercice:

Calculer chacune des expressions suivantes et donner le résultat sous forme de fraction irréductible :

- 1) $\sqrt[3]{\frac{8}{125}}$
- 2) $\sqrt[3]{\frac{1}{64}}$
- 3) $\sqrt[3]{\frac{16}{54}}$
- 4) $\sqrt[3]{\frac{3}{24}}$
- 5) $\sqrt[3]{\frac{40}{135}}$
- 6) $\sqrt[3]{\frac{7}{56}}$

Exercice

Soit l'application $h:\mathbb{R}_+ \to \mathbb{R}_+$ définie par

$$h(x) = \sqrt{x}$$

Calculer l'image de chacun des nombres suivants :

- 1. 100
- 2. 36
- 3. 81
- 4. 0, 25
- 5. 1, 21
- 6. 6, 25